什么专业学神经网络
- 自考专业
- 2024-11-04 21:24:51
非常感谢大家聚集在这里共同探讨什么专业学神经网络的话题。这个问题集合涵盖了什么专业学神经网络的广泛内容,我将用我的知识和经验为大家提供全面而深入的回答。
文章目录列表:
1.人工智能专业主要课程有哪些?2.机器人专业学什么课程
3.将来若想研发神经网络计算机应该报什么专业?
4.人工智能专业主要学些什么?
人工智能专业主要课程有哪些?
人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。
一、机器学习
机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
根据学习方法可以将机器学习分为传统机器学习和深度学习。
二、知识图谱
知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。
三、自然语言处理
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译
机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
语义理解
语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
问答系统
问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
自然语言处理面临四大挑战:
一是在词法、句法、语义、语用和语音等不同层面存在不确定性;
二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;
三是数据资源的不充分使其难以覆盖复杂的语言现象;
四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算
四、人机交互
人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。
五、计算机视觉
计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:
一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;
二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;
三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。
六、生物特征识别
生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。
七、VR/AR
虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势
机器人专业学什么课程
机器人专业学习的课程如下:
1、计算机科学基础:涉及计算机编程、数据结构、算法设计与分析、操作系统等。
2、数学基础:包括线性代数、概率论与数理统计、微积分等数学课程,为机器人控制、感知和决策算法提供数学基础。
3、机器人学基础:介绍机器人学的基本概念、机器人系统结构、运动学、动力学、传感器与执行器等。
4、人工智能与机器学习:学习人工智能的基本原理、机器学习算法、深度学习、神经网络等,以应用于机器人的自主感知和智能决策。
5、控制工程与自动化:涉及控制理论、系统建模与仿真、PID控制、状态估计、路径规划等。
6、传感器与感知技术:学习各种传感器原理、信号获取与处理、图像处理与计算机视觉、激光雷达等感知技术。
7、机器人导航与定位:介绍室内、室外导航技术、定位算法、地图构建等。
8、机器人设计与制造:涉及机械结构设计、材料力学、机器人运动学仿真以及机器人系统开发和制造等。
9、人机交互与界面设计:学习如何设计友好的人机交互界面,使人与机器人能够高效、安全地进行交互。
10、伦理与法律:了解机器人使用中的伦理问题、隐私保护、法律法规等相关内容。
机器人专业的就业前景
1、机器人工程师:机器人专业毕业生可以成为机器人系统的研发工程师或技术人员,参与机器人的设计、开发和制造。
2、人工智能工程师:通常会学习人工智能相关的知识,如机器学习、深度学习等。
3、自动化与控制工程师:机器人专业的学生通常也会学习控制工程和自动化相关的知识。
4、机器人操作员与维护人员:机器人在各个行业中的应用越来越广泛,对于熟悉机器人操作和维护的人才需求也在增加。
5、机器人咨询与销售:机器人专业的毕业生还可以从事机器人的咨询和销售工作。
将来若想研发神经网络计算机应该报什么专业?
神经网络计算机,大白话就是人工智能了
人工智能可以说是一门高尖端学科,属于社会科学和自然科学的交叉,涉及了数学、心理学、神经生理学、信息论、计算机科学、哲学和认知科学、不定性论以及控制论。
研究范畴包括自然语言处理、机器学习、神经网络、模式识别、智能搜索等。应用领域包括机器翻译、语言和图像理解、自动程序设计、专家系统等。
要想研究人工智能,本科专业是数学、计算机、自动化、控制工程相关专业对以后深入学习会比较有优势,但是人工智能如与交通运输相结合,所以学交通运输工程也是很好的选择。
你起码要修好的基础有:高等数学(特别微分,求导),矩阵论(线性代数),概率,和英语(高水平的论文都是英文)
以上完成以后恭喜你点开人工智能基础天赋树。
然后你就可以愉快的找在网上找公开课上课了。推荐cs229(吴恩达教授,斯坦福大学)深度学习课程,台湾李宏毅老师机器学习课程(国语,对中国人比较友好)。
第二阶段完,这个阶段完了以后你应该对于编程和机器学习有一些基本认识了。然后你可以找找自己的兴趣。想走计算机视觉的去看看ted李飞飞的演讲,如何教计算机认识,想走自然语言处理的也可以找找相关素材,我是cv(计算机视觉)
走cv可以继续cs231(李飞飞 el,斯坦福)
走nlp(自然语言处理)的cs224(斯坦福课程)
第三阶段完
第四阶段就是看论文,敲代码,复现实验什么的了。估计3年过去了,你看见我这个回答的时候可能已经做出了自己的决定,给后来人一点微小的贡献把。
帮你在网上找几份,归纳了下的。觉得有道理。
总结下就是,想玩人工智能啊,不是某一学科的事情。请认真考虑。
望采纳
人工智能专业主要学些什么?
人工智能专业是一门研究如何使计算机能够像人一样思考、学习和决策的学科。它涉及到多个领域,包括计算机科学、数学、心理学、哲学等。在人工智能专业中,学生将学习以下内容:
1.计算机科学基础:包括数据结构、算法、计算机网络、操作系统等。这些知识是构建人工智能系统的基础。
2.编程语言:如Python、Java等,用于实现人工智能算法和模型。
3.机器学习:这是人工智能的核心,包括监督学习、无监督学习、强化学习等方法,以及常用的机器学习算法,如线性回归、支持向量机、神经网络等。
4.深度学习:这是一种特殊的机器学习方法,特别是深度神经网络。深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
5.计算机视觉:研究如何让计算机理解和处理图像和视频信息。这包括图像处理、目标检测、图像分割等技术。
6.自然语言处理:研究如何让计算机理解和生成自然语言。这包括分词、词性标注、命名实体识别、情感分析等任务。
7.语音识别:研究如何让计算机识别人类的语音信号。
8.机器人学:研究如何设计和控制智能机器人。这包括机器人感知、运动规划、控制策略等方面。
9.专家系统:研究如何利用人工智能技术解决特定领域的问题。这包括知识表示、推理机制、解释机制等方面。
10.人工智能伦理和法律:研究人工智能技术的伦理和法律问题,如隐私保护、数据安全、责任归属等。
好了,关于“什么专业学神经网络”的讨论到此结束。希望大家能够更深入地了解“什么专业学神经网络”,并从我的解答中获得一些启示。
请添加微信号咨询:19071507959